ar X iv : c s / 06 08 12 3 v 1 [ cs . I T ] 3 1 A ug 2 00 6 Proof of a Conjecture of Helleseth Regarding Pairs of Binary m - Sequences ∗

نویسندگان

  • Zhengbang Zha
  • XueLi Wang
چکیده

–Binary m-sequences are maximal length sequences generated by shift registers of length m, that are employed in navigation, radar, and spread-spectrum communication. It is well known that given a pair of distinct m-sequences, the crosscorrelation function must take on at least three values. This correspondence shows the three correlation values are symmetric about -1. The main result is a proof of a conjecture made by Helleseth in 1976, that if m is a power of 2 then there are no pairs of binary m-sequences with a 3-valued crosscorrelation function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : c s / 06 08 12 0 v 1 [ cs . G T ] 3 0 A ug 2 00 6 Controller synthesis & Ordinal Automata

Ordinal automata are used to model physical systems with Zeno behavior. Using automata and games techniques we solve a control problem formulated and left open by Demri and Nowak in 2005. It involves partial observability and a new synchronization between the controller and the environment.

متن کامل

ar X iv : c s / 06 08 12 0 v 2 [ cs . G T ] 3 0 O ct 2 00 6 Controller synthesis & Ordinal Automata

Ordinal automata are used to model physical systems with Zeno behavior. Using automata and games techniques we solve a control problem formulated and left open by Demri and Nowak in 2005. It involves partial observability and a new synchronization between the controller and the environment.

متن کامل

ar X iv : m at h / 06 08 16 3 v 1 [ m at h . L O ] 7 A ug 2 00 6 IND - AND PRO - DEFINABLE SETS

We describe the indand procategories of the category of definable sets, in some first order theory, in terms of points in a sufficiently saturated model.

متن کامل

ar X iv : c s / 06 08 05 9 v 1 [ cs . L O ] 1 4 A ug 2 00 6 A Distribution Law for CCS and a New Congruence Result

We give an axiomatisation of strong bisimilarity on a small fragment of CCS that does not feature the sum operator. This axiomatisation is then used to derive congruence of strong bisimilarity in the finite π-calculus in absence of sum. To our knowledge, this is the only nontrivial subcalculus of the π-calculus that includes the full output prefix and for which strong bisimilarity is a congruence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006